3.4.32 \(\int \frac {1}{x^2 (d+e x) \sqrt {a+c x^2}} \, dx\) [332]

3.4.32.1 Optimal result
3.4.32.2 Mathematica [A] (verified)
3.4.32.3 Rubi [A] (verified)
3.4.32.4 Maple [A] (verified)
3.4.32.5 Fricas [A] (verification not implemented)
3.4.32.6 Sympy [F]
3.4.32.7 Maxima [F]
3.4.32.8 Giac [A] (verification not implemented)
3.4.32.9 Mupad [F(-1)]

3.4.32.1 Optimal result

Integrand size = 22, antiderivative size = 111 \[ \int \frac {1}{x^2 (d+e x) \sqrt {a+c x^2}} \, dx=-\frac {\sqrt {a+c x^2}}{a d x}-\frac {e^2 \text {arctanh}\left (\frac {a e-c d x}{\sqrt {c d^2+a e^2} \sqrt {a+c x^2}}\right )}{d^2 \sqrt {c d^2+a e^2}}+\frac {e \text {arctanh}\left (\frac {\sqrt {a+c x^2}}{\sqrt {a}}\right )}{\sqrt {a} d^2} \]

output
e*arctanh((c*x^2+a)^(1/2)/a^(1/2))/d^2/a^(1/2)-e^2*arctanh((-c*d*x+a*e)/(a 
*e^2+c*d^2)^(1/2)/(c*x^2+a)^(1/2))/d^2/(a*e^2+c*d^2)^(1/2)-(c*x^2+a)^(1/2) 
/a/d/x
 
3.4.32.2 Mathematica [A] (verified)

Time = 0.33 (sec) , antiderivative size = 128, normalized size of antiderivative = 1.15 \[ \int \frac {1}{x^2 (d+e x) \sqrt {a+c x^2}} \, dx=-\frac {\frac {d \sqrt {a+c x^2}}{a x}+\frac {2 e^2 \arctan \left (\frac {\sqrt {c} (d+e x)-e \sqrt {a+c x^2}}{\sqrt {-c d^2-a e^2}}\right )}{\sqrt {-c d^2-a e^2}}+\frac {2 e \text {arctanh}\left (\frac {\sqrt {c} x-\sqrt {a+c x^2}}{\sqrt {a}}\right )}{\sqrt {a}}}{d^2} \]

input
Integrate[1/(x^2*(d + e*x)*Sqrt[a + c*x^2]),x]
 
output
-(((d*Sqrt[a + c*x^2])/(a*x) + (2*e^2*ArcTan[(Sqrt[c]*(d + e*x) - e*Sqrt[a 
 + c*x^2])/Sqrt[-(c*d^2) - a*e^2]])/Sqrt[-(c*d^2) - a*e^2] + (2*e*ArcTanh[ 
(Sqrt[c]*x - Sqrt[a + c*x^2])/Sqrt[a]])/Sqrt[a])/d^2)
 
3.4.32.3 Rubi [A] (verified)

Time = 0.28 (sec) , antiderivative size = 111, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {617, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x^2 \sqrt {a+c x^2} (d+e x)} \, dx\)

\(\Big \downarrow \) 617

\(\displaystyle \int \left (\frac {e^2}{d^2 \sqrt {a+c x^2} (d+e x)}-\frac {e}{d^2 x \sqrt {a+c x^2}}+\frac {1}{d x^2 \sqrt {a+c x^2}}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {e^2 \text {arctanh}\left (\frac {a e-c d x}{\sqrt {a+c x^2} \sqrt {a e^2+c d^2}}\right )}{d^2 \sqrt {a e^2+c d^2}}+\frac {e \text {arctanh}\left (\frac {\sqrt {a+c x^2}}{\sqrt {a}}\right )}{\sqrt {a} d^2}-\frac {\sqrt {a+c x^2}}{a d x}\)

input
Int[1/(x^2*(d + e*x)*Sqrt[a + c*x^2]),x]
 
output
-(Sqrt[a + c*x^2]/(a*d*x)) - (e^2*ArcTanh[(a*e - c*d*x)/(Sqrt[c*d^2 + a*e^ 
2]*Sqrt[a + c*x^2])])/(d^2*Sqrt[c*d^2 + a*e^2]) + (e*ArcTanh[Sqrt[a + c*x^ 
2]/Sqrt[a]])/(Sqrt[a]*d^2)
 

3.4.32.3.1 Defintions of rubi rules used

rule 617
Int[(x_)^(m_.)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbo 
l] :> Int[ExpandIntegrand[(a + b*x^2)^p, x^m*(c + d*x)^n, x], x] /; FreeQ[{ 
a, b, c, d, p}, x] && ILtQ[n, 0] && IntegerQ[m] && IntegerQ[2*p]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 
3.4.32.4 Maple [A] (verified)

Time = 0.42 (sec) , antiderivative size = 180, normalized size of antiderivative = 1.62

method result size
default \(-\frac {\sqrt {c \,x^{2}+a}}{a d x}+\frac {e \ln \left (\frac {2 a +2 \sqrt {a}\, \sqrt {c \,x^{2}+a}}{x}\right )}{d^{2} \sqrt {a}}-\frac {e \ln \left (\frac {\frac {2 e^{2} a +2 c \,d^{2}}{e^{2}}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+2 \sqrt {\frac {e^{2} a +c \,d^{2}}{e^{2}}}\, \sqrt {\left (x +\frac {d}{e}\right )^{2} c -\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+\frac {e^{2} a +c \,d^{2}}{e^{2}}}}{x +\frac {d}{e}}\right )}{d^{2} \sqrt {\frac {e^{2} a +c \,d^{2}}{e^{2}}}}\) \(180\)
risch \(-\frac {\sqrt {c \,x^{2}+a}}{a d x}+\frac {e \ln \left (\frac {2 a +2 \sqrt {a}\, \sqrt {c \,x^{2}+a}}{x}\right )}{d^{2} \sqrt {a}}-\frac {e \ln \left (\frac {\frac {2 e^{2} a +2 c \,d^{2}}{e^{2}}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+2 \sqrt {\frac {e^{2} a +c \,d^{2}}{e^{2}}}\, \sqrt {\left (x +\frac {d}{e}\right )^{2} c -\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+\frac {e^{2} a +c \,d^{2}}{e^{2}}}}{x +\frac {d}{e}}\right )}{d^{2} \sqrt {\frac {e^{2} a +c \,d^{2}}{e^{2}}}}\) \(180\)

input
int(1/x^2/(e*x+d)/(c*x^2+a)^(1/2),x,method=_RETURNVERBOSE)
 
output
-(c*x^2+a)^(1/2)/a/d/x+e/d^2/a^(1/2)*ln((2*a+2*a^(1/2)*(c*x^2+a)^(1/2))/x) 
-e/d^2/((a*e^2+c*d^2)/e^2)^(1/2)*ln((2*(a*e^2+c*d^2)/e^2-2/e*c*d*(x+d/e)+2 
*((a*e^2+c*d^2)/e^2)^(1/2)*((x+d/e)^2*c-2/e*c*d*(x+d/e)+(a*e^2+c*d^2)/e^2) 
^(1/2))/(x+d/e))
 
3.4.32.5 Fricas [A] (verification not implemented)

Time = 0.44 (sec) , antiderivative size = 767, normalized size of antiderivative = 6.91 \[ \int \frac {1}{x^2 (d+e x) \sqrt {a+c x^2}} \, dx=\left [\frac {\sqrt {c d^{2} + a e^{2}} a e^{2} x \log \left (\frac {2 \, a c d e x - a c d^{2} - 2 \, a^{2} e^{2} - {\left (2 \, c^{2} d^{2} + a c e^{2}\right )} x^{2} - 2 \, \sqrt {c d^{2} + a e^{2}} {\left (c d x - a e\right )} \sqrt {c x^{2} + a}}{e^{2} x^{2} + 2 \, d e x + d^{2}}\right ) + {\left (c d^{2} e + a e^{3}\right )} \sqrt {a} x \log \left (-\frac {c x^{2} + 2 \, \sqrt {c x^{2} + a} \sqrt {a} + 2 \, a}{x^{2}}\right ) - 2 \, {\left (c d^{3} + a d e^{2}\right )} \sqrt {c x^{2} + a}}{2 \, {\left (a c d^{4} + a^{2} d^{2} e^{2}\right )} x}, -\frac {2 \, \sqrt {-c d^{2} - a e^{2}} a e^{2} x \arctan \left (\frac {\sqrt {-c d^{2} - a e^{2}} {\left (c d x - a e\right )} \sqrt {c x^{2} + a}}{a c d^{2} + a^{2} e^{2} + {\left (c^{2} d^{2} + a c e^{2}\right )} x^{2}}\right ) - {\left (c d^{2} e + a e^{3}\right )} \sqrt {a} x \log \left (-\frac {c x^{2} + 2 \, \sqrt {c x^{2} + a} \sqrt {a} + 2 \, a}{x^{2}}\right ) + 2 \, {\left (c d^{3} + a d e^{2}\right )} \sqrt {c x^{2} + a}}{2 \, {\left (a c d^{4} + a^{2} d^{2} e^{2}\right )} x}, \frac {\sqrt {c d^{2} + a e^{2}} a e^{2} x \log \left (\frac {2 \, a c d e x - a c d^{2} - 2 \, a^{2} e^{2} - {\left (2 \, c^{2} d^{2} + a c e^{2}\right )} x^{2} - 2 \, \sqrt {c d^{2} + a e^{2}} {\left (c d x - a e\right )} \sqrt {c x^{2} + a}}{e^{2} x^{2} + 2 \, d e x + d^{2}}\right ) - 2 \, {\left (c d^{2} e + a e^{3}\right )} \sqrt {-a} x \arctan \left (\frac {\sqrt {-a}}{\sqrt {c x^{2} + a}}\right ) - 2 \, {\left (c d^{3} + a d e^{2}\right )} \sqrt {c x^{2} + a}}{2 \, {\left (a c d^{4} + a^{2} d^{2} e^{2}\right )} x}, -\frac {\sqrt {-c d^{2} - a e^{2}} a e^{2} x \arctan \left (\frac {\sqrt {-c d^{2} - a e^{2}} {\left (c d x - a e\right )} \sqrt {c x^{2} + a}}{a c d^{2} + a^{2} e^{2} + {\left (c^{2} d^{2} + a c e^{2}\right )} x^{2}}\right ) + {\left (c d^{2} e + a e^{3}\right )} \sqrt {-a} x \arctan \left (\frac {\sqrt {-a}}{\sqrt {c x^{2} + a}}\right ) + {\left (c d^{3} + a d e^{2}\right )} \sqrt {c x^{2} + a}}{{\left (a c d^{4} + a^{2} d^{2} e^{2}\right )} x}\right ] \]

input
integrate(1/x^2/(e*x+d)/(c*x^2+a)^(1/2),x, algorithm="fricas")
 
output
[1/2*(sqrt(c*d^2 + a*e^2)*a*e^2*x*log((2*a*c*d*e*x - a*c*d^2 - 2*a^2*e^2 - 
 (2*c^2*d^2 + a*c*e^2)*x^2 - 2*sqrt(c*d^2 + a*e^2)*(c*d*x - a*e)*sqrt(c*x^ 
2 + a))/(e^2*x^2 + 2*d*e*x + d^2)) + (c*d^2*e + a*e^3)*sqrt(a)*x*log(-(c*x 
^2 + 2*sqrt(c*x^2 + a)*sqrt(a) + 2*a)/x^2) - 2*(c*d^3 + a*d*e^2)*sqrt(c*x^ 
2 + a))/((a*c*d^4 + a^2*d^2*e^2)*x), -1/2*(2*sqrt(-c*d^2 - a*e^2)*a*e^2*x* 
arctan(sqrt(-c*d^2 - a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a)/(a*c*d^2 + a^2*e 
^2 + (c^2*d^2 + a*c*e^2)*x^2)) - (c*d^2*e + a*e^3)*sqrt(a)*x*log(-(c*x^2 + 
 2*sqrt(c*x^2 + a)*sqrt(a) + 2*a)/x^2) + 2*(c*d^3 + a*d*e^2)*sqrt(c*x^2 + 
a))/((a*c*d^4 + a^2*d^2*e^2)*x), 1/2*(sqrt(c*d^2 + a*e^2)*a*e^2*x*log((2*a 
*c*d*e*x - a*c*d^2 - 2*a^2*e^2 - (2*c^2*d^2 + a*c*e^2)*x^2 - 2*sqrt(c*d^2 
+ a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a))/(e^2*x^2 + 2*d*e*x + d^2)) - 2*(c* 
d^2*e + a*e^3)*sqrt(-a)*x*arctan(sqrt(-a)/sqrt(c*x^2 + a)) - 2*(c*d^3 + a* 
d*e^2)*sqrt(c*x^2 + a))/((a*c*d^4 + a^2*d^2*e^2)*x), -(sqrt(-c*d^2 - a*e^2 
)*a*e^2*x*arctan(sqrt(-c*d^2 - a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a)/(a*c*d 
^2 + a^2*e^2 + (c^2*d^2 + a*c*e^2)*x^2)) + (c*d^2*e + a*e^3)*sqrt(-a)*x*ar 
ctan(sqrt(-a)/sqrt(c*x^2 + a)) + (c*d^3 + a*d*e^2)*sqrt(c*x^2 + a))/((a*c* 
d^4 + a^2*d^2*e^2)*x)]
 
3.4.32.6 Sympy [F]

\[ \int \frac {1}{x^2 (d+e x) \sqrt {a+c x^2}} \, dx=\int \frac {1}{x^{2} \sqrt {a + c x^{2}} \left (d + e x\right )}\, dx \]

input
integrate(1/x**2/(e*x+d)/(c*x**2+a)**(1/2),x)
 
output
Integral(1/(x**2*sqrt(a + c*x**2)*(d + e*x)), x)
 
3.4.32.7 Maxima [F]

\[ \int \frac {1}{x^2 (d+e x) \sqrt {a+c x^2}} \, dx=\int { \frac {1}{\sqrt {c x^{2} + a} {\left (e x + d\right )} x^{2}} \,d x } \]

input
integrate(1/x^2/(e*x+d)/(c*x^2+a)^(1/2),x, algorithm="maxima")
 
output
integrate(1/(sqrt(c*x^2 + a)*(e*x + d)*x^2), x)
 
3.4.32.8 Giac [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 143, normalized size of antiderivative = 1.29 \[ \int \frac {1}{x^2 (d+e x) \sqrt {a+c x^2}} \, dx=2 \, c {\left (\frac {e^{2} \arctan \left (-\frac {{\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )} e + \sqrt {c} d}{\sqrt {-c d^{2} - a e^{2}}}\right )}{\sqrt {-c d^{2} - a e^{2}} c d^{2}} - \frac {e \arctan \left (-\frac {\sqrt {c} x - \sqrt {c x^{2} + a}}{\sqrt {-a}}\right )}{\sqrt {-a} c d^{2}} + \frac {1}{{\left ({\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )}^{2} - a\right )} \sqrt {c} d}\right )} \]

input
integrate(1/x^2/(e*x+d)/(c*x^2+a)^(1/2),x, algorithm="giac")
 
output
2*c*(e^2*arctan(-((sqrt(c)*x - sqrt(c*x^2 + a))*e + sqrt(c)*d)/sqrt(-c*d^2 
 - a*e^2))/(sqrt(-c*d^2 - a*e^2)*c*d^2) - e*arctan(-(sqrt(c)*x - sqrt(c*x^ 
2 + a))/sqrt(-a))/(sqrt(-a)*c*d^2) + 1/(((sqrt(c)*x - sqrt(c*x^2 + a))^2 - 
 a)*sqrt(c)*d))
 
3.4.32.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{x^2 (d+e x) \sqrt {a+c x^2}} \, dx=\int \frac {1}{x^2\,\sqrt {c\,x^2+a}\,\left (d+e\,x\right )} \,d x \]

input
int(1/(x^2*(a + c*x^2)^(1/2)*(d + e*x)),x)
 
output
int(1/(x^2*(a + c*x^2)^(1/2)*(d + e*x)), x)